Recent Android Kernel trend
for Device Longevity

2024.09.05 Youngmin Nam
(ym0914@gmail.com)
(voungmin.nam@samsung.com)

mailto:youngmin.nam@samsung.com

EU ecodesign regulation

» The EU Ecodesign Regulation (Regulation (EU) 2023/1670) includes specific requirements related

to smartphone software that are deS|gned to enhance theIongeV|ty and sustalnablllty of these

devices. Here are the main aspects

1. Software Update Reqwrement Manufacturers are obllgated to prowde software updates

|ncIud|ngsecur|ty atches | for a m|n|mum off| years 'ter ' smartphone model |s reIesed

on the market. Th|s reqwrement ensures that smartphones remain secure and functlonal over

an extended perlod reducing the necessity for early replacement due to outdated software.

2. Performance Afte Updates The regulatron alsoempha5|zes that software updates should

not degrade the perormance or functloallty of the smartphone Th|s IS to prevent scenarios

where updates might lead to sIower performance wh|ch could push users to replace their

devices prematurely.

3. Transparency and Availability: Manufacturers must inform consumers about the software
support duration and the availability of updates at the time of purchase. This transparency

helps consumers make informed decisions based on the expected software lifespan of the

device.

These provisions are part of the broader goals of the Ecodesign Regulation to reduce electronic

waste, promote sustainable consumption, and extend the usable life of smartphones (EUR-Lex)
(Energy Efficient Products) (EUR-Lex).

What is Device Longevity ?

©

Device longevity refers to the length of time an electronic device or gadget remains functional and

performs well. It encompasses various aspects such as durability, reliability, and the overall

lifespan of the device. Factors influencing device longevity include manufacturing quality, usage

patterns, environmental conditions, and maintenance.

Key elements affecting device longevity include:

1.

Manufacturing Quality: The materials used and the construction of the device play a

significant role. High-quality components and robust assembly can extend a device's life.

Usage Environment: Conditions such as temperature, humidity, dust, and exposure to

physical shocks can impact how long a device lasts.
Frequency of Use: Devices used more frequently or intensively tend to wear out faster.

Maintenance: Regular care and maintenance, such as cleaning and timely repairs, can help

prolong a device's life.

Software Support For smart devuces ongomg software updates can enhance performance

address securlty vulnerabllltles and extend usablllty

Pixel 1 (2016)

Release Support

Model Announced Discontinued Final Lifespan!?!
Date With OS Date!'] 0s2

_ October 20, 7.1 _ 3 years,
Pixel / XL | October 4, 2016 April 11, 2018 | December 2, 2019 10
2016 Nougat 1 month

android / kernel / msm / refs/heads/android-msm-marlin-3.18-pie-qpr2

665c9al Merge branch 'android-msm-marlin-3.18-pi-qpr1' into android-msm-marlin-3.18-pi-qpr2 by Miguel de Dios android-msm-
marlin-3.18-pie-gpr2 android-9.0.0_r0.64 android-9.0.0 r0.71

c31e2d7 Merge branch 'android-msm-marlin-3.18-pi' into android-msm-marlin-3.18-pi-gpri1 by Miguel de Dios - 6 years ago

eccd578 Merge branch 'android-msm-marlin-3.18-pi-security-next' into android-msm-marlin-3.18-pi by Miguel de Dios - 6 years ago

d3dofdf Revert "Revert "msm: vidc: ignore processing responses in invalid state"" by Miguel de Dios - 6 years ago

e06dal5 Revert "msm: vidc: ignore processing responses in invalid state" by Petri Gynther - 6 years ago

5a19ffd UPSTREAM: binder: fix race that allows malicious free of live buffer by Todd Kjos - 6 years ago

42abdbd binder: create node flag to request sender's security context by Todd Kjos - 6 years ago

0421807 msm: vidc: do not set video state to DEINIT very early by c_darssr - 6 years ago

aeac614 (cacld-2.0: Integer overflow in wma_unified_link_peer_stats_event_handler by jitiphil - 6 years ago

d7afeal qcacld-2.0: Fix OOB write in wma_extscan_change_results_event_handler by Sunil Ravi - 6 years ago

iIPhone 6S (2015)

Release(d) Support
Model Discontinued Final Lifespan!®]
With OS Date Ended]
0s Max[°! Min[¢]

iPhone 6s/ _ 8 years, 5 years,
i0S 9.0 September 25, 2015 | September 12, 2018
6s Plus 10 months 10 months

August 17, 2022

i : _ 8 years, 5 years,
iPhone SE (1st) i0S 9.3 March 31, 2016 September 12, 2018 | (last security update:
3 months 10 months
9.2 beta Darwin Kernel Version 15.0.0: Sun Oct 18 23:34:30 PDT 2015; root:xnu-
' 3248.20.33.0.1~7\/RELEASE_ARM®64_S8000
10.2 beta 3 Darwin Kernel Version 16.3.0: Mon Nov 7 22:58:42 PST 2016; root:xnu-
.2 beta . : i .
3789.30.92~36\/RELEASE_ARM64_S8000 VeT*E Supported iOS versions on the iPhone
iPhoneOS version iOS version
iPhone models
11.2 beta 2 Darwin Kernel Version 17.3.0: Sun Oct 29 17:18:38 PDT 2017, root:xnu- 1 2 3 4 5/ 6|7 /8|9 |10 11 |12 13 14 15 |16 |17 | 18
.2 beta :
4570.30.85~18/RELEASE_ARM64_T8015 iPhone 6s(®] — | = | = | = |=|=|=|=|vIv| ¢« || / S X x| x
1911 Darwin Kernel Version 18.2.0: Mon Nov 12 20:32:01 PST 2018; root:xnu-

4903.232.2~1/RELEASE ARM64 T8020

Darwin Kernel Version 19.2.0: Mon Nov 4 17:44:49 PST 2019; root:xnu-

13.3
6153.60.66~39/RELEASE_ARM64_T8010
14.3 bet Darwin Kernel Version 20.2.0: Sun Nov 1 23:50:23 PST 2020; root:xnu-
: a
7195.60.63~22/RELEASE_ARM64_T8015
Darwin Kernel Version 21.2.0: Thu Nov 11 02:37:21 PST 2021; root:xnu-
15.2 beta 3

8019.60.69~8/RELEASE_ARMG64_T8110

EOL of LTS Kernel (kernel.org # ACK)

Longterm release kernels

Support

Version Maintainer Released Projected EOL ACK branch Launch ifetime EOL
166 [Greg Kroah-Hartman & Sashalevin __1202310-29 _ Dec, 2026 aate (years)

6.1 Greg Kroah-Hartman & Sasha Levin 2022-12-11 Dec, 2026
5.15 Greg Kroah-Hartman & Sasha Levin 2021-10-31 Dec, 2026 android-4.19-stable 2018.10.22 6 025.01-01
5.10 Greg Kroah-Hartman & Sasha Levin 2020-12-13 Dec, 2026
5.4 Greg Kroah-Hartman & Sasha Levin 2019-1-24 Dec, 2025 ndroid11.5.4 2019-11.04 ’ 2026.01.01
4.19 Greg Kroah-Hartman & Sasha Levin 2018-10-22 Dec, 2024

| 2020 (Android 12) | 2022 (Android 13) | 2023 (Android 14) | 2024 (Android 15) android12-5.4 2019-11-24 © 2026-01-01

| New LTS (5.10) I New LTS (5.15) | New LTS (6.1) | New LTS (6.6)

> android-mainline é > android12-5.10 2020-12-13 6 2027-07-01

!
|
|
|
I
+
|
|
|
|
|
|
|

|
Eandroid15-6.6 > | android13-5.10 2020-12-13 6 2027-07-01
l. |

android13-5.15 2021-10-31 6 2028-07-01

!
|
|
|
|
L
I
|
|
|
I
|
I
I
I
|
|
|
|

]
|
|
|
|
-
|
I
|
I
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
I

|
|
4 :
android13-5.15 D
i ; i | android14-5.15 2021-10-31 6 2028-07-01
| | |
I I |
E android14-5.15 | >
| i android14-6.1 2022-12-11 6 2029-07-01
| |
| I |
android12-5.10 >
|

android15-6.6 2023-10-29 4 2028-07-01

|
|
|
I
I
|
| |
| |
|
|
|
|
|
|
|
|
|
|

N

androic:ﬂ 3-5.10

D

| |
\ Android Common Kernel Branching Model /

http://kernel.org

There 1Is no such thing as a free lunch

MOBILE ANDROID OS

Google extends Linux kernel support to keep Android devices
secure for longer

After Linux reduced LTS releases from 6 years to 2, Google has committed to supporting its forks for 4 years.

By Mishaal Rahman - July 8, 2024 D B X

 But LTS Kernel’s EOL cannot cover device lifespan.

* G6-year support lifetime of stable kernels are not long enough for modern devices.

S0, Kernel Uprev (major version upgrade) is essential.

2

Long Term Supported (LTS) (e.g., 4.19.y)

)

®

|

AVARRMVEANVER VAR VR vi

2

Android Common Kernel (ACK) (e.g., android-4.19)

>

©

INL L NAREINAR L

2

Vendor kernel

>

@>MHH\/J, L LNl

>

Product kernel

git clone git merge git cherry-pick

Before GKI (Generic Kernel Image)

Cost of Kernel
Fragmentation

Security updates are labor intensive
Difficult to merge long-term stable updates
Inhibits Android Platform release upgrades

Difficult to contribute kernel changes back
to upstream Linux

GKI (Generic Kernel Image)

o N
-~

b
*
b
& - - -

Vendor
Modules

Stable Interfaces
Vendor

............

AN ’ Unstable Interfaces

_ Kernel Module Interface (KMI)
(stable between Android Platform Releases)

The necessity of module build

Vendor modules o

A vendor module is delivered by partners to implement SoC and device-specific capabilities. Any existing kernel module
that isn't delivered as part of the GKI kernel can be delivered as a vendor module.

Since one of the primary goals of the GKI po]ctls o_|||z ardwar secnflcoe in the coekernelv vendors can
expect that the GKI kernel won't include modules that are clearly managmg their own hardware. For example, vendor

Generic Kernel
Image (GKI)
(arm64)

4.19.x/ 5.x.y

Chip- & Board-
Specific Drivers
(Kernel Modules)

)
—
Q

=2
(D

>
Y,
SN
>
@

GKI Modules
4.19.x/ 5.x.y

Android Kernel build (deprecated way)

e build.sh

o |ots of control via env variables
ever-growing shell script collection
difficult to maintain
hermeticity / reproducibility as hack

O O O O

What is Bazel ?

Bazel (/berzal/®l) is a free and open-source software tool used for the automation of

building and testing software.[?! Google uses the build tool Blaze internallyl*] and
released an open-source port of the Blaze tool as Bazel, named as an anagram of

Blaze.!®! Bazel was first released in March 2015 and entered beta by September 2015.

6] Version 1.0 was released in October 2019.7]

Similar to build tools like Make, Apache Ant, and Apache Maven,[?Il] Bazel builds
software applications from source code using rules. Rules and macros are created in
the Starlark language (previously called Skylark), 18] fh [5]r
'|It|n 4Ies rbU|I|‘s're nft in ava otlll.n '-'|-+Go Python,
Rust, JavaScript, Objective-C, and bash scripts.®!l] Bazel can produce software
application packages suitable for deployment for the Android and iOS operating

systems.®]

Rationale |edit;

Bazel

One of Bazel's main purposes is to establish a build system in which the inputs and
outputs of build targets are fully specified.

Initial release

Stable release

Repository

ertten |n 3

Operatmg sys
License
Website

Google

March 2015; 9 years ago

7.2.1 /25 June 2024; 55
days ago!'!

github.com/bazelbuild
lbazel 2 ¥

Java[2]

tem Cross pIatform
Apache License 2.0

bazel.build 2

Languages & Rules on Bazel

— it C/C++Rules A- SEND FEEDBACK

REPORT AN ISSUE (4 VIEW SOURCE (4 Nightly-7.3-7.2-71-7.0-6.5
Build encyclopedia
Overview
Common definitions Ru |eS
Make variables
Functions e cc_binary
» Corerules

anguage Specific rules cc_import

Android
C/C++

cc_library

Java cc_proto_library

Objective-C cc_shared_library
Protocol Buffer
Python

Shell
AppEngine [/

Apple (Swift, i0S, macOS, tv0S, [/
visionOS, watch0S)

c# [/

D[4

Docker [/

Groovy [/

Go [/

JavaScript (Closure) [/
Jsonnet [/

Rust [/

Sass [/

Scala [/

Test encyclopedia

cc_static_library
cc_test
cc_toolchain
cc_toolchain_suite
fdo_prefetch_hints
fdo_profile
memprof_profile

propeller_optimize

cc_binary

VIEW RULE SOURCE [4

g

cc_binary(name, deps, srcs, data, additional_linker_inputs, args, compatible_with, copts, defines,

< It produces an executable binary.

On this page
Rules
cc_binary
Arguments
cc_import
Arguments
cc_library
Arguments
cc_proto_library
Arguments
cc_shared_library
Arguments
cc_static_library
Arguments
cc_test
Arguments
cc_toolchain
Arguments
cc_toolchain_suite
Arguments
fdo_prefetch_hints
Arguments
fdo_profile
Arguments
memprof_profile
Arguments
propeller_optimize

Arguments

Bazel 101

A workspace Is a directory that holds your project's source files and Bazel's build outputs.

The MODULE.bazel file, which identifies the directory and its contents as a Bazel workspace
and lives at the root of the project's directory structure.

One or more BUILD(or BUILD.bazel) files, which tell Bazel how to build different parts of the
project. A directory within the workspace that contains a BUILD file is a package.

Each instance of a build rule in the BUILD file is called a target

Workspace —» -stage]
Package ————— mailn
—— BUILD
—— hello-world.cc
—— MODULE .bazel

< builld & run >
bazel build //main:hello-world

Hello World USing Bazel bazel-bin/main/hello-world

Take a look at the 1ib/BUILD file;

< single source> < multi source>

< multi package>

-stage -stage?2 —stage3
L main L main —— main cc_library(
BUILD name "hello-time",
'l: BUILD BUILD hello-world.cc srcs ["hello-time.cc"],
hello-world.cc hello-world.cc hello-greet.cc hdrs = ["hello-time.h"],

L MODULE .bazel hello-greet.cc TG P visibility = ["//main:__pkg__"1,

hello-greet.h

cc_binary(L MODULE.bazel BUILD
name = "hello-world"”, hello-time.cc And at the main/BUILD file:

srcs = ["hello-world.cc"], cc_library(hello-time.h
name = "hello-greet”, L — MODULE .bazel

srcs = ["hello-greet.cc"], . o
o § name ello-greet"”,
hdrs = ["hello-greet.h"], srcs = ["hello-greet.cc"],

) hdrs ["hello-greet.h"],
)

cc_library(

cc_binary(|
. ; cc_binary/(
name = "hello-world", name = "hello-world"

srcs = ["hello-world.cc"], srcs = ["hello-world.cc"],
deps = | deps = [

- . ":hello-greet”,
-hello-greet”, "//lib:hello-time",

I

Android Kernel build with Bazel (a.k.a kleaf)

$ BUILD_CONFIG=common/build.config.gki.aarch64 build/build.sh kernel_build

Defines a kernel build target with all dependent targets.

It uses a build_config to construct a deterministic build environment (e.g. common/build.config.gki.aarch64). The kernel sources need to
be declared via srcs (using a glob ()). outs declares the output files that are surviving the build. The effective output file names will be
$(name) /$ (output_file) . Any other artifact is not guaranteed to be accessible after the rule has run. The default toolchain_version is

$ bazel bUild // common: ke r\nel aar‘ch64 defined with the value in common/build.config.constants, but can be overriden.

A few additional labels are generated. For example, if name is "kernel_aarche4" :

* kernel_aarch64_uapi_headers provides the UAPI kernel headers.
* kernel_aarch64_headers provides the kernel headers.

PARAMETERS
Name Description Default
Value
< B U I LD) baze|> name The final kernel target name, e.g. "kernel_aarch64" . none
load (" / /bu i ld/ ker‘nel/ kleaf:kernel.bzl" 5 build_config Label of the build.config file, e.g. "build.config.gki.aarche4" . none
"kerne 1_b uild" 3 "ke r‘nel_mOd ule™) outs The expected output files. none

kernel build(
name = "kernel",
outs = ["vmlinux"],
bUild_COn'Fig = " Common/build . COn'Fig . gki .adnrc h64" 5 Generates a rule that builds an external kernel module.

kernel_module

SPrcs = glob(["**"]), PARAMETERS
) Name Description Default
Value
ke r\nel_modu le (name Name of this kernel module. none
name = " n'FC " 5 kernel_build Label referring to the kernel_build module. none
Srcs = g].Ob ([kx M])) outs The expected output files. If unspecified or value is None, itis ["{name}.ko"] by default. None

outs = ["nfc.ko",],
kernel_build = "//common:kernel”,

Android Kernel build with Bazel (a.k.a kleaf)

// my_mod.c // my_other_mod.c # BUILD.bazel
#include <linux/module.h> #include <linux/module.h> load("//build/kernel/kleaf:kernel.bzl", "ddk_module")
#include "my_mod.h" ddk_module(
name = "my_mod",
MODULE_DESCRIPTION("A demo module"); MODULE_DESCRIPTION("Another demo module"); srcs = ["my_mod.c",],
MODULE_LICENSE("GPL v2"); MODULE_LICENSE("GPL v2"); out = "my_mod.ko",
hdrs = ["my_mod.h"],
void print_from_my_mod(void) { void print_something(void) { kernel_build = "//common:kernel”,
printk (KERN_INFO "Hello"); print_from_my_mod() ; deps = ["//common:all_headers"],
b 3)
EXPORT_SYMBOL_GPL (print_from_my_mod) ; ddk_module(
name = "my_other_mod",
srcs = ["my_other_mod.c",],
out = "my_other_mod.ko",
kernel_build = "//common:kernel"”,
deps = |
":my_mod",
"//common:all_headers"”,

No Kconfig, No Makefile I,

TL;DR

EU eco design regulation

Kernel Uprev is essential for device longevity (Pixel 1 vs iPhone 6s)
GKI

Module build

Bazel (Kleaf)

Question ?

References

https://chatgpt.com/

https://en.wikipedia.org/wiki/Google Pixel

https://android.googlesource.com/kernel/msm/+/refs/heads/android-msm-marlin-3.18-pie-qpr2

https://en.wikipedia.org/wiki/IPhone

https://en.wikipedia.org/wiki/IOS version history
https://theapplewiki.com/wiki/Kernel#iOS/iPadOS

https://www.kernel.org/category/releases.html

https://source.android.com/docs/core/architecture/kernel/android-common#common-kernel-hierarchy

https://source.android.com/docs/core/architecture/kernel/android-common#support-lifetimes

https://www.androidauthority.com/google-extends-linux-support-3457871/

https://source.android.com/docs/core/architecture/kernel/generic-kernel-image

https://source.android.com/docs/core/architecture/kernel

https://Ipc.events/event/7/contributions/792/attachments/519/931/Update on GKI KMI enforcement tools 1.pdf

https://en.wikipedia.org/wiki/Bazel (software)

https://bazel.build/start/cpp

https://bazel.build/reference/be/c-cpp
https://Ipc.events/event/16/contributions/1337/attachments/968/1891/LPC 2022 - Hermetic Builds with Bazel.pdf

https://android.googlesource.com/kernel/build/+/refs/heads/main/kleaf/docs/api reference/kernel.md#kernel module

https://Ipc.events/event/17/contributions/1441/attachments/1163/2406/Simplified Android Kernel Driver Development with DDK v2.pdf

https://chatgpt.com/
https://en.wikipedia.org/wiki/Google_Pixel
https://android.googlesource.com/kernel/msm/+/refs/heads/android-msm-marlin-3.18-pie-qpr2
https://en.wikipedia.org/wiki/IPhone
https://en.wikipedia.org/wiki/IOS_version_history
https://theapplewiki.com/wiki/Kernel#iOS/iPadOS
https://www.kernel.org/category/releases.html
https://source.android.com/docs/core/architecture/kernel/android-common#common-kernel-hierarchy
https://source.android.com/docs/core/architecture/kernel/android-common#support-lifetimes
https://www.androidauthority.com/google-extends-linux-support-3457871/
https://source.android.com/docs/core/architecture/kernel/generic-kernel-image
https://source.android.com/docs/core/architecture/kernel
https://lpc.events/event/7/contributions/792/attachments/519/931/Update_on_GKI_KMI_enforcement_tools_1.pdf
https://en.wikipedia.org/wiki/Bazel_(software)
https://bazel.build/start/cpp
https://bazel.build/reference/be/c-cpp
https://android.googlesource.com/kernel/build/+/refs/heads/main/kleaf/docs/api_reference/kernel.md#kernel_module

